Книга Черные дыры и Вселенная
Страница 40

Первая попытка это сделать была предпринята Э. Герцшпрунгом. Он понял, что звезды, наблюдаемые Г. Ливитт в Малом Магеллановом Облаке, точно такие же, как хорошо известные переменные звезды, называемые цефеидами, в нашей Галактике. Блеск цефеид меняется из-за того, что они пульсируют. Теперь надо было определить истинную светимость хотя бы одной цефеиды. Вот тут-то и начались серьезные трудности. В окрестности Солнца нет ни одной цефеиды, расстояние до которой надежно можно было бы определить тригонометрическим способом и, зная ее видимый блеск и расстояние, вычислить истинную светимость. Универсальное средство для уборки дома бытовая химия универсальное средство.

Начались многочисленные попытки определения расстояний до цефеид нашей Галактики. Первая оценка, была сделана самим Э. Герцшпрунгом. Мы не будем описывать здесь суть используемых при этом хитрых косвенных методов. Отметим только, что и первая, и многие последующие попытки были столь трудны, что приведи к результатам, содержащим значительные ошибки. Эти ошибки были окончательно выявлены только в начале 60-х годов. Но работа эта настолько важна (речь идет об измерении масштабов Вселенной!), что уточнения продолжаются до сих пор.

После того как установлена истинная светимость хоть одной цефеиды с известным периодом изменения блеска, стало возможным измерять расстояние до любой цефеиды. Действительно, теперь известна зависимость “период — истинная светимость” для цефеид. Для определения расстояния до любой цефеиды достаточно по наблюдениям определить период изменения ее блеска, затем по зависимости найти истинную светимость и, сравнивая с видимым блеском, вычислить расстояние. Если цефеида входит в состав какого-либо скопления звезд или галактики, то тем самым определяется расстояние и до них. Цефеиды здесь используются как “стандартные свечи”, истинная яркость которых известна. Поэтому и весь метод получил название метода “стандартной свечи”.

Роль цефеид в измерении расстояний столь велика, чти известный американский астроном X. Шепли назвал их “самыми важными” звездами.

Истинная светимость цефеид очень велика — они в тысячу раз ярче Солнца. Поэтому цефеиды видны с достаточно больших расстояний, вплоть до 15 миллионов световых лет. Значит, с их помощью можно определять расстояние до ближайших галактик.

Но нас интересуют еще большие масштабы!

Для дальнейшего продвижения приходится делать еще один шаг. Хотелось бы найти “стандартные свечи” более яркие, чем цефеиды, и хорошо видимые с еще больших расстояний. Оказалось, что такие “свечи” есть. Вокруг галактик обычно наблюдается много звездных скоплений, которые за свою форму получили название шаровых.

Когда с помощью цефеид были определены расстояния до ближайших галактик, сравнили истинные светимости шаровых скоплений вокруг разных галактик. Оказалось, что если выбрать вокруг каждой галактики ярчайшее шаровое скопление, то истинная светимость этих ярчайших скоплений практически одинакова для всех галактик.

Значит ярчайшие шаровые скопления вокруг галактик можно использовать как “стандартную свечу”, причем более яркую, чем цефеиды.

Этим методом можно измерять расстояние вплоть до шестидесяти миллионов световых лет. А это значит, что можно измерить расстояние уже до ближайших скоплений галактик. Дальше, увы, шаровые скопления различать пока невозможно.

Следующая ступень — использование еще более яркой “стандартной свечи”. Выяснилось, что в разных скоплениях галактик ярчайшие галактики имеют одинаковую светимость — примерно в десять раз больше светимости нашей Галактики.

Эти ярчайшие “стандартные свечи” позволяют продвигаться уже на миллиарды световых лет.

Такова “лестница масштабов”, используемая астрономами на пути в глубь Вселенной.

А как измеряют скорости движения далеких объектов?

Разумеется, на расстояниях не только ближайших к нам галактик, но и более отдаленных не заметны никакие перемещения звезд и других объектов на фоне неба, по которым можно было бы вычислить скорость перемещения их в пространстве поперек луча зрения.

Единственное, что можно измерить, но зато сравнительно просто и надежно, это скорость приближения к нам или удаления небесных тел. Такое измерение делается методом, использующим эффект Доплера, о котором уже упоминалось в первом разделе книги. Когда небесное тело приближается к нам — свет его голубеет, когда удаляется — краснеет. Измерение смещения линий в спектре звезды к голубому или красному концу позволяет вычислять скорость, точнее, ту часть скорости, которая направлена по “лучу зрения”. Поэтому скорости, определенные по эффекту Доплера, астрономы называют “лучевыми скоростями”.

Страницы: 36 37 38 39 40 41 42 43 44