Общие принципы ТЭА и выбора двигателя самолета
Страница 2

Эквивалентом критерия (1) при Cs £ Cs является критериальная функция

Е = max ( U| Cсв ) ( 2 )

U - эффективность самолета в одном вылете

Cсв - стоимость самолето-вылета

ТТХ самолета оказывают влияние одновременно на U и Ссв. ТТХ влияют на Ссв главным образом через стоимость самолета. Технико-техническае характеристики самолета связаны с функциональными характеристиками двигателя. Выбор типа двигателя для самолетов оперативно-технического назначения определяется их высотно-скоростными характеричтиками. Основными функциональными характеристиками, определяющими применение на сверхзвуковых самолетах форсажных двигателей, являются абсолютная и удельная (по расходу воздуха) тяга. от коротых зависят максимальная скорость и высота полета. Вместе с тем принимаются во внимание относительная стабильность тяги с увеличением скорости и высоты полета.

Перечисленные характеристики зависят от обобщенных конструкторских параметров : тяговооруженности r0, нагрузки на крыло P0 и относительной массы нагрузки авиационного комплекса, которые во многом определяются ФХ двигателя : абсолютной Р0 и удельной Рв тяги, весовой отдачей (Рm = Р0/ mg), удельным расходом топлива на форсажном Ceф и безфорсажном Сe режимах. Развитие обощено-конструктивных параметров (ОКП) самолета происходит при увеличении Р0, Рв, Рm и снижении Сeф, Сe.

Рост тяги двигателя обеспечивается увеличением расходов воздуха, проходящего через двигателя в единицу времени (с), степени сжатия компрессора Пr* и температура газа перед турбиной Т*r . Одновременно эти параметры определяют (при прочих равных условиях) уровень удельных функциональных характеристик двигателя: с ростом П*r и Т*r увеличивается удельная тяга Рв и весовая отдача Рm, снижается расход топлива Сe на бесфорсажном режиме. Расход воздуха от которого при {П*r, Т*r} зависит тяга двигателя, определяется площадью кольцевого канала Frr , образующего газовоздушный тракт двигателя.

Увеличение Frr происходит либо путем уменьшения диаметра наружного кольца dвх , либо путем уменьшения диаметра втулки. Последнее имеет предел, определяемый допустимой длиной лопаток компрессора, ограниченной пределом прочности материала. при прочих равных условиях рост достигается увеличением радиальных размеров компрессора, что приводит к росту массы двигателя. но стремление повысить аэродинамическое весовое совершенство двигателя расставляет ограничивает рост dвх. что достигаетсяувеличениемудельного расхода воздуха

qв = Gв / Fлоб

Fлоб - площадь лобового сечения

Увеличение степени сжатия компрессора П*r. напористей ступеней и удельного расхода воздуха приводит к возрастанию нагрузки от аэродинамических сил на лопатки компрессора и детали корпуса и ротора. Увеличение окружной скорости и длины лопаток приводит к увеличению нагрузок от центробежных сил на вращающиеся детали ротора.

Большая мощность турбин современных двигателей при малых габаритах и массе достигается увеличением теплопередача. преобразуемого в одной ступени в механическую работу на валу ротора турбины, что требует повышения окружной скорости на лопаточном венце. Одновременно увеличивается осевая скорость газа в проточной части на выходе из турбины и температура газа перед турбиной. Таким образом, повышение мощности на единицу массы турбины вызывает увеличение действующих механических и температурных нагрузок.

Рост напряженности рабочих процессов требует применения конструктивных материалов с высокими механическими свойствами: титановых сплавов, высоколегированных жаропрочных сталей и сплавов., что приводит к росту материалоемкости, трудоемкости, увеличению стоимости оборудования. оснастки, других показателей, определяющих уровень себестоимости двигателя. Следовательно ФХ двигателя через материалы, конструкцию и технологию влияют на стоимость двигателя.

Страницы: 1 2 3 4