Радиотехника и космос
Страница 7

Радиотелескопы воспринимают весьма длинноволновое излучение. Поэтому фокальное пятно в радиотелескопах огромно. И соответственно разрешающая способность этих инструментов весьма низка. Оказывается, например, что радиотелескоп с диаметром зеркала 5 м при длине радиоизлучения 1 м способен разделить источники излучения, если они отстоят друг от друга больше чем на десять градусов!

Десять градусов—это двадцать видимых поперечников Луны. Значит, указанный радиотелескоп не способен «разглядеть» в отдельности такие мелкие для него небесные светила, как Солнце или Луна.

Ясно, что низкая разрешающая способность обычных небольших радиотелескопов — большой недостаток; даже при огромных размерах зеркала она, как правило, уступает разрешающей силе человеческого глаза (не говоря уже об оптических телескопах). Как же можно устранить это препятствие?

Физикам уже давным-давно известно явление сложения волн, названное ими интерференцией. В школьном учебнике физики подробно описано, какое значение имеет интерференция на практике. Оказывается, интерференцию можно использовать в радиоастрономии.

Вообразим, что одновременно из двух источников распространяются две волны. Если они, как говорят физики, находятся в противоположных фазах, то есть «горб» одной приходится как раз против «впадины» другой, обе волны «погасят» друг друга, и колебания среды прекратятся. Если это световые волны—наступит тьма, если звуковые—тишина, если волны на воде — полный покой.

Может случиться, что волны находятся в одинаковых фазах («горб» одной волны совпадает с «горбом» другой). Тогда такие волны усиливают друг друга, и колебания среды будут совершаться с удвоенной интенсивностью.

Представим себе теперь устройство, называемое радиоинтерферометром (рис.3). Это два одинаковых радиотелескопа, разделенных расстоянием (базой) и соединенных между собой электрическим кабелем, к середине которого присоединен радиоприемник. От источника радиоизлучения на оба радиотелескопа непрерывно приходят радиоволны. Однако тем из них, которые попадают на левое зеркало, приходится проделать несколько больший путь, чем радиоволнам, уловленным правым радиотелескопом. Разница в путях, называемая разностью хода, равна отрезку АБ. Нетрудно сообразить, что если в этом отрезке укладывается четное число полуволн улавливаемого радиоизлучения, то «левые» и «правые» радиоволны придут в приемник с одинаковой фазой и усилят друг друга. При нечетном числе полуволн произойдет обратное— взаимное гашение радиоволн, и в приемник радиосигналы вовсе не поступят.

Обратите внимание: при изменении направления на источник излучения меняется и разность хода.

Достаточно при этом (что очень важно!) лишь весьма незначительное изменение угла j, чтобы «гашение» волн сменилось их усилием или наоборот, на что сразу же отзовется весьма чувствительный радиоприемник.

Радиоинтерферометры делают, как правило, неподвижными. Но ведь Земля вращается вокруг своей оси, и поэтому положение светил на небе непрерывно меняется. Следовательно, в радиоинтерферометре постоянно будут наблюдаться периодические усиления и ослабления радиопередачи от наблюдаемого источника космических радиоволн.

Радиоинтерферометры гораздо «зорче» обычных радиотелескопов, так как они реагируют на очень малые угловые смещения светила, а значит, и позволяют исследовать объекты с небольшими угловыми размерами. Иногда радиоинтерферометры состоят не из двух, а из нескольких радиотелескопов. При этом разрешающая способность радиоинтерферометра существенно увеличивается. Есть и другие технические устройства, которые позволяют современным «радио глазам» астрономов стать очень «зоркими», гораздо более зоркими, чем невооруженный человеческий глаз!

рис.3 Схема радиоинтерферометра (d- его база, т.е. расстояние между радиотелескопами, характеризует направление на источник радиоволн).

Радиоинтерферометры гораздо «зорче» обычных радиотелескопов, так как они реагируют на очень малые угловые смещения светила, а значит, и позволяют исследовать объекты с небольшими угловыми размерами. Иногда радиоинтерферометры состоят не из двух, а из нескольких радиотелескопов. При этом разрешающая способность радиоинтерферометра существенно увеличивается. Есть и другие технические устройства, которые позволяют современным «радио глазам» астрономов стать очень «зоркими», гораздо более зоркими, чем невооруженный человеческий глаз!

Страницы: 3 4 5 6 7 8 9 10 11