Технология сборки и испытания летательных аппаратов
Страница 2

где: τимп – длительность импульса лазера;

Ө - угол расходимости луча лазера;

t – количество импульсов лазера;

Авозд – протяженность воздушного промежутка;

Аос – протяженность оптической системы;

Zжс – коэффициент преломления жидкой среды;

m – масса капли промывочной жидкости;

∆F – положение фокуса оптической системы относительно капли промывочной жидкости;

Аж.с. – протяженность жидкой среды;

Кт.ф. – теплофизические параметры капли промывочной жидкости.

Таким образом, из большого разнообразия 24 основных технологических факторов оказывающих влияние на процесс светогидравлического эффекта, при проведении многофакторного регрессивного анализа можно не учитывать влияние 10 факторов, отнесенных к третьей группе. Так как можно условно принять, что эти факторы остаются постоянными для выбранной схемы взаимодействия и не изменяют свое значение не только в течение всего времени протекания светогидравлического эффекта, но и в течение более длительного времени.

Анализ факторов, представленных во второй группе, показывает, что фактор λ (длина волны лазера) который должен быть согласован с длиной волны цвета капли промывочной жидкости, является величиной постоянной для выбранного лазера, так как изменить этот параметр в лазере типа ЛТИ-ПЧ не представляется возможным. Легче всего управлять этим фактором, изменяя цвет капли промывочной жидкости, то есть воздействовать на фактор Пк (показатель преломления парожидкостной области), отнесенный к первой группе факторов.

Факторы Пв.с; Ув.с; Уж.с.; Пж.с.; Ук; Zк; Уо.с; По.с; Zо.с, то есть параметры, учитывающие поглощающие, отражательные и рассеивающие способности различных элементов структуры СГС, так же можно условно отнести к постоянным. Не изменяющим свое значение в течение всего времени процесса взаимодействия, но изменяющим свои параметры в течение более длительного времени.

Фактор ∆F (положение точки фокуса оптической системы относительно поверхности капли), отнесенного ко второй группе факторов, так же можно считать постоянным, так как в ряде работ [1; 5; 8] было показано, что световой поток, образованный лазером в жидкой среде, изменяет свои геометрические параметры, образуя протяженный световой цилиндр. Длина этого цилиндра составляет 11,95 мм (для воды) при максимальном диаметре сферической капли промывочной жидкости (фреон) равного 6,5 мм. Следовательно, протяженность минимального диаметра светового цилиндра почти в два раза больше диметра сферической капли и, таким образом, нет необходимости точно учитывать положение точки фокуса относительно поверхности капли, то есть правомочно утверждение о том, что указанный фактор можно считать постоянным.

Таким образом, из всего ряда перечисленных технологических факторов, можно выделить основные факторы, в наибольшей степени оказывающие влияние на параметры выходных величин, это: энергия светового импульса (WΣ), диаметр сферы капли промывочной жидкости (2r) и поглощающая способность капли (Пк).

Таким образом, основной задачей является проведение многофакторного эксперимента и получение по его данным зависимости:

К= t(WΣ; r; Пк)

а также оценка влияния и вклада каждого фактора из указанных в отдельности и во взаимосвязи на величину выходного параметра в камере светогидравлической промывочной установки.

1.2. Статистическое планирование эксперимента при исследовании оптимальных характеристик СГС.

С целью упрощения нахождения оптимальных характеристик СГС рационально применять методы статистического планирования эксперимента, позволяющие находить оптимум с помощью сравнительно небольшого количества экспериментов.

Одним из наиболее пригодных для данного случая методов является метод полного многофакторного планирования.

Как известно [25], постановка полного факторного эксперимента сводится к следующим операциям: выбору уравнения регрессии, составлению плана полного факторного эксперимента, расчету коэффициентов регрессии, оценке значимости этих коэффициентов и анализу уравнения регрессии, после этого можно переходить к поиску оптимума.

Страницы: 1 2 3 4 5 6