Системы стабилизации и ориентации
Страница 2

, (1.1)

где у и u-векторы размерностей (n ´ 1) и (m ´ 1); А и В - матрицы размерности (n´ n) и (n´ m).

С целью использования одинаковой формы описания объектов непрерывных, дискретно-непрерывных и дискретных САР пользуются теорией спектрального разложения матриц, которая с помощью специально созданных алгоритмов позволяет получать единые математические модели в дискретной форме. К основному преимуществу такого подхода следует отнести возможность представления моделей с использованием матриц до 50-80-го порядков, без существенного понижения точности спектрального разложения матриц.

Рассмотрим алгоритмы, с помощью которых составляются дискретные модели многомерных объектов, описываемых типовым векторно-матричным уравнением (1.1). Аналитическое решение этого уравнения при начальных условиях y(t0) имеет вид

(1.2)

В моменты времени t=кT0 и t=(к+1)Т0 состояние объекта ук+1 связано с предыдущим состоянием ук соотношением

(1.3)

где - переходная матрица системы уравнений.

Математические зависимости для алгоритмов дискретных моделей можно составить с тремя типами экстраполяторов.

Самая простая дискретная модель может быть получена, если положить, что внутри интервала квантования сигнала, и (t) экстраполируется по одной точкеступеньки со значениями ик , т.е. перед объектом включен экстраполятор нулевого порядка Э0. В этом случае соотношение (1.3) можно представить в виде

ук+1=Фук+Fик . (1.4)

Здесь F=(Ф - I)А-1В - матрица коэффициентов, обеспечивающих передачу сигналов по входам дискретной модели.

1.2 Передаточные функции непрерывных и дискретных систем

Под передаточной функцией стационарных элементов понимают отношение изображения выходной величины к изображению функции входной величины, полученные при нулевых начальных условиях. Для многоконтурных стационарных элементов возможно получение матрицы передаточных функций на основе модели системы во временной области в векторно-матричной форме (1.1). Применяя преобразование Лапласа, получим:

IX(s)=AX(s)+BU(s), (1.5)

где I - единичная матрица. Путем несложных преобразований найдем:

X(s)=(Is – A)-1BU(s). (1.6)

Таким образом, матрицу передаточных функций в общем виде можно записать так:

MU=X(s)/U(s)=(Is – A)-1B (1.7)

1.3 Частотные характеристики непрерывных и

дискретных систем

Частотные характеристики линейных непрерывных систем находятся из передаточных функций после подстановки в них s=jw и выделения действительной мнимой частей, т.е.

W0(jw)=U0(w)+jV0(w), (1.8)

где U0(w) и V0(w) - соответственно действительная и мнимая частотные характеристики.

Пользуясь выражением (1.8), в декартовой системе координат строят амплитудно-фазовые частотные характеристики W0(jw). Если перейти к полярной системе координат, то выражение (1.8) можно переписать в виде

(1.9)

где и q0(w) - соответственно амплитудная и фазовая частотные характеристики.

Из выражений (1.8) и (1.9) можно найти формулы для вычисления амплитудной и фазовой частотных характеристик:

(1.10)

Частотные характеристики линейных дискретных систем находятся путем подстановки в передаточные функции .

На практике амплитудные и фазовые частотные характеристики строят на полулогарифмической бумаге. Тогда ось w размечают в логарифмическом масштабе, где изменение частоты в 10 раз называется декадой, амплитуду откладывают в децибелах и фазу q в градусах.

Страницы: 1 2 3 4 5 6