Исследование движения центра масс межпланетных космических аппаратов
Страница 10

Cx = yVz - zVy

Cy = zVx - xVz - проекции на оси абсолютной СК

Cz = xVy - yVx

б) Эксцентриситет - е.

e = f/mz, где f - вектор Лапласа

f = V ´ C - mzr/r, |f| = f = Ö(fx2+fy2+fz2)

fx = VyCz - VzCy - mzx/r

fy = VzCx - VxCz - mzy/r - проекции на оси абсолютной СК

fz = VxCy - VyCx - mzz/r

в) Большая полуось орбиты.

a = p/(1 - e2)

г) Наклонение орбиты - i.

Cx = Csin(i)sinW

Cy = - Csin(i)cosW

Cz = Ccos(i)

можно найти наклонение i = arccos(Cz/C)

д) Долгота восходящего узла - W.

Из предыдущей системы можно найти

sinW = Cx/Csin(i)

cosW = - Cy/Csin(i)

Так как наклонение орбиты изменяется несильно в районе i = 97,6°, мы имеем право делить на sin(i).

Если sinW => 0, W = arccos (-Cy/Csin(i))

Если sinW < 0, W = 360 - arccos (-Cy/Csin(i))

е) Аргумент перицентра - w.

fx = f(coswcosW - sinwsinWcos(i))

fy = f(coswsinW + sinwcosWcos(i))

fz = fsinwsin(i)

Отсюда найдем

cosw = fxcosW/f + fysinW/f

sinw = fz/fsin(i)

Если sinw > 0, w = arccos (fxcosW/f + fysinW/f)

Если sinw < 0, w = 360 - arccos (fxcosW/f + fysinW/f)

ж) Период обращения - Т.

T = 2pÖ(a3/mz)

Графики изменения элементов орбиты при действии всех, рас­смотренных выше, возмущающих ускорений в течение 2-х перио­дов (Т = 5765 с) приведены на рис. 1-12.

Графики изменения во времени возмущающих ускорений приве­дены на рис. 13-18.

2.5. ПРОВЕДЕНИЕ КОРРЕКЦИИ ТРАЕКТОРИИ МКА

Существующие ограничения на точки старта РН и зоны падения отработавших ступеней РН, а также ошибки выведения не позво­ляют сразу же после пуска реализовать рабочую орбиту. Кроме того, эволюция параметров орбит под действием возмущающих ус­корений в процессе полета МКА приводит к отклонению парамет­ров орбиты КА от требуемых значений. Для компенсации воздей­ст­вия указанных факторов осуществляется коррекция орбиты с по­мощью корректирующей двигательной установки (КДУ), которая располагается на борту МКА.

В данной работе проведена разработка алгоритма коррекции, моделирование процесса коррекции и расчет топлива, необходи­мого для проведения коррекции.

Из-за различных причин возникновения отклонений элементов орбиты проводится:

- коррекция приведения - ликвидация ошибок выведения и при­ве­дение фактической орбиты к номинальной с заданной точно­стью.

- коррекция поддержания - ликвидация отклонений параметров орбиты от номинальных, возникающих из-за действия возмущаю­щих ускорений в процессе полета.

Для того, чтобы орбита отвечала заданным требованиям, откло­нения параметров задаются следующим образом:

- максимальное отклонение наклонения орбиты Di = 0,1°

- предельное суточное смещение КА по долготе Dl = 0,1°

Следовательно, максимальное отклонение периода орбиты DT = 1,6 сек.

Алгоритм коррекции следующий:

1) Коррекция приведения.

2) Коррекция поддержания.

2.5.1. КОРРЕКЦИЯ ПРИВЕДЕНИЯ

После окончания процесса выведения МКА, проводятся внешне-траекторные измерения (ВТИ). Эти измерения обеспечивают, по баллистическим расчетам, знание вектора состояния с требуемой точностью через 2 суток. После этого начинается коррекция приве­дения.

Предложена следующая схема проведения коррекции:

а) Коррекция периода.

б) Коррекция наклонения.

Корректирующий импульс прикладывается в апсидальных точ­ках, либо на линии узлов в течение 20 сек и происходит исправле­ние одного параметра орбиты. Таким образом используется одно­пара­метрическая, непрерывная коррекция.

а) Коррекция периода.

Осуществляется в два этапа:

- коррекция перицентра

- коррекция апоцентра

Сначала осуществляется коррекция перицентра - приведение те­кущего расстояния до перицентра rp к номинальному радиусу rн = 6952137 м. По­сле измерения вектора состояния рассчитываются параметры ор­биты. Далее определяется нужный корректирующий импульс DVк. На­правление импульса (тормозящий или разгоняю­щий) зависит от взаимного расположения перицентра орбиты и радиуса номиналь­ной орбиты. Для этого вычисляется Drp = rp - rн.

Страницы: 6 7 8 9 10 11 12 13 14